Fungi are ubiquitous in the environment and humans constantly encounter them in the soil, air, water, and food. The vast majority of these interactions are inconsequential. However, in the context of immunodeficiency precipitated by HIV infection, hematologic malignancy, or transplantation, a small subset of fungi can cause devastating, systemic infection. The most deadly of the opportunistic environmental fungi, Cryptococcus neoformans, is estimated to cause hundreds of thousands of deaths per year, mostly in the context of HIV co-infection. The cellular processes that mediate adaptation to the host environment are of great interest as potential novel therapeutic targets. One such cellular process important for host adaptation is mRNA decay, which mediates the specific degradation of subsets of functionally related mRNAs in response to stressors relevant to pathogenesis, including human core body temperature, carbon limitation, and reactive oxygen stress. Thus, for C. neoformans, host adaptation requires mRNA decay to mediate rapid transcriptome remodeling in the face of stressors encountered in the host. Several nodes of stress-responsive signaling that govern the stress-responsive transcriptome also control the decay rate of mRNAs cleared from the ribosome during stress, suggesting an additional layer of coupling between mRNA synthesis and decay that allows C. neoformans to be a successful pathogen of humans. WIREs RNA 2017, 8:e1424. doi: 10.1002/wrna.1424 For further resources related to this article, please visit the WIREs website.