“…Thus, yeasts, as an experimental model system, offer great advantages over other disease models due to the simplicity, short life cycle, low-cost cultivation techniques, relatively simple, cheap, and quick genetic and environmental manipulations, the large knowledge base and data collections, and availability of an unprecedented number of genomic and proteomic toolboxes and high-throughput screening techniques (Figure 1). S. cerevisiae shows a high degree of conservation of different basic biological processes with all eukaryotic cells, such as gene interactions and recombination [57], the regulation of the cell cycle [58], organelle function, energy metabolism [59], mitochondria biogenesis [60], protein folding, quality control and degradation [61], proteostasis network [62], endocytosis [63], secretion [64], vesicular trafficking [65], autophagic pathways [66], programmed cell death [67], and many key signaling pathways, such as mitogen-activated protein kinase (MAPK) [68] and target of rapamycin (TOR) [69]. Moreover, in the majority of cases, these pathways were originally identified and studied in yeasts.…”