The potent peptidic inhibitor, Y1, of the basic residuespecific yeast aspartyl protease, yapsin 1, was synthesized and characterized. The inhibitor was based on the peptide sequence of a cholecystokinin The apparent K i of Y1 for the inhibition of yapsin 1 was determined to be 64.5 nM, and the mechanism is competitive. Y2 was also developed as an analog of Y1 for coupling to agarose beads. The resulting inhibitor-coupled agarose beads were successfully used to purify yapsin 1 to apparent homogeneity from conditioned medium of a yeast expression system. Utilization of this new reagent greatly facilitates the purification of yapsin 1 and should also enable the identification of new yapsin-like enzymes from mammalian and nonmammalian sources. In this regard, Y1 also efficiently inhibited Sap9p, a secreted aspartyl protease from the human pathogen, Candida albicans, which has specificity for basic residues similar to yapsin 1 and might provide the basis for the prevention or control of its virulence. A single-step purification of Sap9p from conditioned medium was also accomplished with the inhibitor column. N-terminal amino acid sequence analysis yielded two sequences indicating that Sap9p is composed of two subunits, designated here as ␣ and , similar to yapsin 1.