2003
DOI: 10.1074/jbc.m300383200
|View full text |Cite
|
Sign up to set email alerts
|

Yeast Epiarginase Regulation, an Enzyme-Enzyme Activity Control

Abstract: In the presence of ornithine and arginine, ornithine carbamoyltransferase (OTCase) and arginase form a one-to-one enzyme complex in which the activity of OTCase is inhibited whereas arginase remains catalytically active. The mechanism by which these nonallosteric enzymes form a stable complex triggered by the binding of their respective substrates raises the question of how such a cooperative association is induced. Analyses of mutations in both enzymes identify residues that are required for their association… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2003
2003
2010
2010

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(1 citation statement)
references
References 41 publications
0
1
0
Order By: Relevance
“…Both arginine anabolism and catabolism are linked to the urea cycle. In the case of the urea cycle, cell uses the available arginine, ornithine, and citrulline to effect enzymatic activity in addition to Gcn4p to regulate metabolic flux [13,26]. While we were unable to completely eliminate the growth defect in gcn2 Δ strains with supplements, partial growth restoration was possible in media containing high concentrations of ornithine.…”
Section: Discussionmentioning
confidence: 99%
“…Both arginine anabolism and catabolism are linked to the urea cycle. In the case of the urea cycle, cell uses the available arginine, ornithine, and citrulline to effect enzymatic activity in addition to Gcn4p to regulate metabolic flux [13,26]. While we were unable to completely eliminate the growth defect in gcn2 Δ strains with supplements, partial growth restoration was possible in media containing high concentrations of ornithine.…”
Section: Discussionmentioning
confidence: 99%