Small object detection in traffic sign applications often faces challenges like complex backgrounds, blurry samples, and multi-scale variations. Existing solutions tend to complicate the algorithms. In this study, we designed an efficient and simple algorithm network called StarCAN-PFD, based on the single-stage YOLOv8 framework, to accurately recognize small objects in complex scenarios. We proposed the StarCAN feature extraction network, which was enhanced with the Context Anchor Attention (CAA). We designed the Pyramid Focus and Diffusion Network (PFDNet) to address multi-scale information loss and developed the Detail-Enhanced Conv Shared Detect (DESDetect) module to improve the recognition of complex samples while keeping the network lightweight. Experiments on the CCTSDB dataset validated the effectiveness of each module. Compared to YOLOv8, our algorithm improved mAP@0.5 by 4%, reduced the model size to less than half, and demonstrated better performance on different traffic sign datasets. It excels at detecting small traffic sign targets in complex scenes, including challenging samples such as blurry, low-light night, occluded, and overexposed conditions, showcasing strong generalization ability.