Yellow rust (YR) or stripe rust, caused by Puccinia striformis f. sp tritici Eriks (Pst), is a major challenge to resistance breeding in wheat. A genome wide association study (GWAS) was performed using 22,415 single nucleotide polymorphism (SNP) markers and 591 haplotypes to identify genomic regions associated with resistance to YR in a subset panel of 419 pre-breeding lines (PBLs) developed at International Center for Maize and Wheat Improvement (CIMMYT). The 419 PBLs were derived from an initial set of 984 PBLs generated by a three-way crossing scheme (exotic/elite1//elite2) among 25 best elites and 244 exotics (synthetics, landraces) from CIMMYT’s germplasm bank. For the study, 419 PBLs were characterized with 22,415 high-quality DArTseq-SNPs and phenotyped for severity of YR disease at five locations in Mexico. A population structure was evident in the panel with three distinct subpopulations, and a genome-wide linkage disequilibrium (LD) decay of 2.5 cM was obtained. Across all five locations, 14 SNPs and 7 haplotype blocks were significantly (P < 0.001) associated with the disease severity explaining 6.0 to 14.1% and 7.9 to 19.9% of variation, respectively. Based on average LD decay of 2.5 cM, identified 14 SNP–trait associations were delimited to seven quantitative trait loci in total. Seven SNPs were part of the two haplotype blocks on chromosome 2A identified in haplotypes-based GWAS. In silico analysis of the identified SNPs showed hits with interesting candidate genes, which are related to pathogenic process or known to regulate induction of genes related to pathogenesis such as those coding for glunolactone oxidase, quinate O-hydroxycinnamoyl transferase, or two-component histidine kinase. The two-component histidine kinase, for example, acts as a sensor in the perception of phytohormones ethylene and cytokinin. Ethylene plays a very important role in regulation of multiple metabolic processes of plants, including induction of defense mechanisms mediated by jasmonate. The SNPs linked to the promising genes identified in the study can be used for marker-assisted selection.