Biofouling is a major issue across various industries ranging from healthcare to the production of food and water and transportation. Biofouling is often induced or mediated by environmental microbes, such as bacteria. Therefore, developing antibacterial coatings has been an essential focus of recent research on functional polymer thin films. To achieve high film quality, vapor-phase techniques represent promising alternatives to traditional solution-based methods, especially for the design and synthesis of antibacterial polymer coatings, as they enable highly uniform, chemically precise, and substrate-independent coatings. This Perspective examines the potential of vapor-phase polymerization techniques to create novel antibacterial polymer coatings. Current advancements in the design of antifouling, bactericidal, antibiofilm, and multifunctional coatings via vapor-phase techniques are organized based on their action mechanisms and design principles. The opportunities and challenges associated with implementing vapor-phase polymerization for developing antibacterial coatings are highlighted.