Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
One of the most important nutrients needed for fruit tree growth is nitrogen. For orchards to get targeted, well-informed nitrogen fertilizer, accurate, large-scale, real-time monitoring, and assessment of nitrogen nutrition is essential. This study examines the Leaf Nitrogen Content (LNC) of the custard apple tree, a noteworthy fruit tree that is extensively grown in China’s Yunnan Province. This study uses an ensemble learning technique based on multiple machine learning algorithms to effectively and precisely monitor the leaf nitrogen content in the tree canopy using multispectral canopy footage of custard apple trees taken via Unmanned Aerial Vehicle (UAV) across different growth phases. First, canopy shadows and background noise from the soil are removed from the UAV imagery by using spectral shadow indices across growth phases. The noise-filtered imagery is then used to extract a number of vegetation indices (VIs) and textural features (TFs). Correlation analysis is then used to determine which features are most pertinent for LNC estimation. A two-layer ensemble model is built to quantitatively estimate leaf nitrogen using the stacking ensemble learning (Stacking) principles. Random Forest (RF), Adaptive Boosting (ADA), Gradient Boosting Decision Trees (GBDT), Linear Regression (LR), and Extremely Randomized Trees (ERT) are among the basis estimators that are integrated in the first layer. By detecting and eliminating redundancy among base estimators, the Least Absolute Shrinkage and Selection Operator regression (Lasso)model used in the second layer improves nitrogen estimation. According to the analysis results, Lasso successfully finds redundant base estimators in the suggested ensemble learning approach, which yields the maximum estimation accuracy for the nitrogen content of custard apple trees’ leaves. With a root mean square error (RMSE) of 0.059 and a mean absolute error (MAE) of 0.193, the coefficient of determination (R2) came to 0. 661. The significant potential of UAV-based ensemble learning techniques for tracking nitrogen nutrition in custard apple leaves is highlighted by this work. Additionally, the approaches investigated might offer insightful information and a point of reference for UAV remote sensing applications in nitrogen nutrition monitoring for other crops.
One of the most important nutrients needed for fruit tree growth is nitrogen. For orchards to get targeted, well-informed nitrogen fertilizer, accurate, large-scale, real-time monitoring, and assessment of nitrogen nutrition is essential. This study examines the Leaf Nitrogen Content (LNC) of the custard apple tree, a noteworthy fruit tree that is extensively grown in China’s Yunnan Province. This study uses an ensemble learning technique based on multiple machine learning algorithms to effectively and precisely monitor the leaf nitrogen content in the tree canopy using multispectral canopy footage of custard apple trees taken via Unmanned Aerial Vehicle (UAV) across different growth phases. First, canopy shadows and background noise from the soil are removed from the UAV imagery by using spectral shadow indices across growth phases. The noise-filtered imagery is then used to extract a number of vegetation indices (VIs) and textural features (TFs). Correlation analysis is then used to determine which features are most pertinent for LNC estimation. A two-layer ensemble model is built to quantitatively estimate leaf nitrogen using the stacking ensemble learning (Stacking) principles. Random Forest (RF), Adaptive Boosting (ADA), Gradient Boosting Decision Trees (GBDT), Linear Regression (LR), and Extremely Randomized Trees (ERT) are among the basis estimators that are integrated in the first layer. By detecting and eliminating redundancy among base estimators, the Least Absolute Shrinkage and Selection Operator regression (Lasso)model used in the second layer improves nitrogen estimation. According to the analysis results, Lasso successfully finds redundant base estimators in the suggested ensemble learning approach, which yields the maximum estimation accuracy for the nitrogen content of custard apple trees’ leaves. With a root mean square error (RMSE) of 0.059 and a mean absolute error (MAE) of 0.193, the coefficient of determination (R2) came to 0. 661. The significant potential of UAV-based ensemble learning techniques for tracking nitrogen nutrition in custard apple leaves is highlighted by this work. Additionally, the approaches investigated might offer insightful information and a point of reference for UAV remote sensing applications in nitrogen nutrition monitoring for other crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.