Additive manufacturing has become increasingly common in the last ten years for the production of designs that cannot be produced with traditional manufacturing methods or are very difficult and costly. Additive manufacturing is done by adding layer by layer in line with the production direction of the part. Support structures used in the manufacture of parts are a component of additive manufacturing. These structures form the base plate of the part, reduce thermal deformations and provide support for sagging that may occur on the surfaces. Therefore, the production direction of a part affects the quality, cost and other properties of the object. In this study, the effects of production direction on part integrity, geometric precision and surface roughness were investigated on a part designed to consist of flat, curved and angular surfaces. In this direction, roughness measurements were made from the upper surface of the samples produced and the effects of precision balance and support structures on the weight were examined. In addition, the images of the produced samples were transferred to the CAD environment and their geometric accuracy was investigated. The stability of the base plate and the sufficient cooling of the layers ensured the surface quality and geometric accuracy of the part. Inhomogeneous thermal stress on the base plate increases the deviation of the part from the nominal size.