A major challenge in the experimental study of aneurysm properties is that the tissues are heterogeneous. When the specimens are not reasonably homogeneous, traditional tests that work under the premise of tissue homogeneity cannot reliably delineate the local conditions at the rupture site. In this work, we investigated the local characteristics of rupture of human ascending aortic aneurysm tissue. We identified the stress, strain, and elastic properties to a submillimeter resolution. Based on the field values, we determined the local conditions - elastic properties, direction of maximum stiffness, stress, strain, energy consumption - at the rupture site. It was found that the tissues consistently cleave in the direction of the maximum stiffness, and generally occurs at the location of highest energy. Since a higher stiffness and higher strain energy indicate a larger recruitment of collagen fibers in the tissue at the location and along the direction of rupture, the work suggests that the recruitment of collagen fibers in the deformation of the tissue is probably essential in aneurysm rupture.