The preparation and isolation of the metalated ylides [Cy3PCSO2Tol]M (Cy1‐M) (with M = Li, Na, K) are reported. In contrast to its triphenylphosphonium analogue the synthesis of Cy1‐M revealed to be less straight forward. Synthetic routes to the phosphonium salt precursor Cy1‐H2 via different methods revealed to be unsuccessful or low‐yielding. However, nucleophilic attack of the ylide Cy3P = CH2 at toluenesulfonyl fluoride under basic conditions proved to be a high‐yielding method directly leading to the ylide Cy1‐H. Metalation to the yldiides was finally achieved with strong bases such as nBuLi, NaNH2, or BnK. In the solid state, the lithium compound forms a tetrameric structure consisting of a (C–S–O–Li)4 macrocycle, which incorporates an additional molecule of lithium iodide. The potassium compound forms a C4‐symmetric structure with a (K4O4)2 octahedral prism as central structural motif. Upon deprotonation the P–C–S linkage undergoes a remarkable contraction typical for metalated ylides.