2020
DOI: 10.1109/access.2020.3046515
|View full text |Cite
|
Sign up to set email alerts
|

YOLO-ACN: Focusing on Small Target and Occluded Object Detection

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
37
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
6
4

Relationship

0
10

Authors

Journals

citations
Cited by 103 publications
(38 citation statements)
references
References 40 publications
0
37
0
1
Order By: Relevance
“…Based on the domain, the attention mechanisms could be classified into spatial, channel, and mixed domain attention mechanisms. Overall, attention mechanisms have shown significant potential in the area of object detection due to their intuitiveness, versatility, and interpretability [21].…”
Section: B Attentionmentioning
confidence: 99%
“…Based on the domain, the attention mechanisms could be classified into spatial, channel, and mixed domain attention mechanisms. Overall, attention mechanisms have shown significant potential in the area of object detection due to their intuitiveness, versatility, and interpretability [21].…”
Section: B Attentionmentioning
confidence: 99%
“…Menurut (Li et al 2020) dalam penelitiannya yang berjudul " YOLO-ACN: Focusing on Small Target and Occluded Object Detection " hasil eksperimen kuantitatif menunjukkan bahwa dibandingkan dengan model canggih lainnya, YOLO-ACN yang diusulkan memiliki akurasi dan kecepatan tinggi dalam mendeteksi target kecil dan objek yang terhalang. YOLO-ACN mencapai mAP50 (presisi rata-rata rata-rata) 53,8% dan AP (presisi rata-rata untuk objek) sebesar 18,2% pada kecepatan waktu nyata 22 ms pada dataset MS COCO, dan mAP untuk satu kelas pada dataset KAIST bahkan mencapai lebih dari 80% pada NVIDIA Tesla K40.…”
Section: Pendahuluanunclassified
“…M. Li et al [ 33 ] proposed SE-YOLO, a real-time pedestrian object detection algorithm for small objects in infrared images, which improves the feature modeling ability of the network by introducing an SE block [ 34 ] into YOLOv3, which improved the feature expression ability of the network combined with the SE block. Li et al [ 35 ] developed a detector, YOLO-ACN, by introducing an attention module and a depth-wise separable convolution. Sun et al [ 36 ] proposed I-YOLO, which modified the backbone with EfficientNet and added a preposition network, DRUNet, to reduce the noise of infrared images.…”
Section: Related Workmentioning
confidence: 99%