2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA) 2020
DOI: 10.1109/aeeca49918.2020.9213506
|View full text |Cite
|
Sign up to set email alerts
|

YOLO Based Recognition Method for Automatic License Plate Recognition

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
4
2

Relationship

0
10

Authors

Journals

citations
Cited by 19 publications
(5 citation statements)
references
References 12 publications
0
4
0
1
Order By: Relevance
“…Video prediction is one of the possible ways of learning from unlabeled data [11][12][13]. For this reason, most current advanced models [14][15][16] extract the optical flow from contiguous video frames, and then use LSTM (Long Short-Term Memory networks), RNN (Recurrent Neural Networks) or feedforward networks to ingest sequences [17][18][19][20]. Regarding pre-processed optical flow, it is observed that it provides no motion information for models.…”
Section: Introductionmentioning
confidence: 99%
“…Video prediction is one of the possible ways of learning from unlabeled data [11][12][13]. For this reason, most current advanced models [14][15][16] extract the optical flow from contiguous video frames, and then use LSTM (Long Short-Term Memory networks), RNN (Recurrent Neural Networks) or feedforward networks to ingest sequences [17][18][19][20]. Regarding pre-processed optical flow, it is observed that it provides no motion information for models.…”
Section: Introductionmentioning
confidence: 99%
“…Penelitian (Yolo-v et al 2020) mengimplementasikan pendeteksian ANPR menggunakan Algoritme YOLO v3 dapat disimpulkan bahwa pendeteksian ANPR pada plat nomor kendaraan secara real time mengg unakan algoritme YOLO v3 berhasil dan jika terdapat pengendara yang melakukan pelanggaran pada lampu lalu lintas maka sistem tersebut dapat memberikan peringatan kepada petugas terdekat. Penelitian (Riaz et al 2020) terkait teknologi ANPR dan OCR untuk mendeteksi beberapa plat nomor kendaraan pada citra mobil menunjukkan bahwa pendeteksian plat nomor kendaraan pada citra yang memiliki resolusi rendah berhasil dengan algoritme YOLO v3 dan YOLO v4. Algoritme YOLO v4 memiliki nilai mAP yang lebih tinggi serta proses pendeteksian yang lebih cepat dibandingkan dengan algoritme YOLO v3.…”
Section: Pendahuluanunclassified
“…Extensive experimental testing validates the effectiveness and efficiency of their approach in real-world working environments. In another related work [18], authors experienced the use of temporal redundancy in license plate detection. The results of their method reached an overall recognition rate of 86% and achieved an outstanding accuracy of 99% for four-letter plates.…”
Section: Temporal Redundancymentioning
confidence: 99%