2024
DOI: 10.3390/agriculture14081240
|View full text |Cite
|
Sign up to set email alerts
|

YOLOv8-RCAA: A Lightweight and High-Performance Network for Tea Leaf Disease Detection

Jingyu Wang,
Miaomiao Li,
Chen Han
et al.

Abstract: Deploying deep convolutional neural networks on agricultural devices with limited resources is challenging due to their large number of parameters. Existing lightweight networks can alleviate this problem but suffer from low performance. To this end, we propose a novel lightweight network named YOLOv8-RCAA (YOLOv8-RepVGG-CBAM-Anchorfree-ATSS), aiming to locate and detect tea leaf diseases with high accuracy and performance. Specifically, we employ RepVGG to replace CSPDarkNet63 to enhance feature extraction ca… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 34 publications
0
0
0
Order By: Relevance