“…The identification of communities in social media and the detection of stances in Tweets has become increasingly important in recent times [15,18,19,26,28] as a result of the tangible effect that these platforms have on the public opinion. In this domain, identifying communities implies analyzing the position of contributing agents concerning a particular topic or their respective argumentative stance; several tools can be used for this purpose, for instance [19] describes an approximation solution based on a supervised classifier that finds stances, and classifies them, over a graph representation. Most of the explored work on identifying stances focuses on the classification of tweets as "in favor" (support), "against" (dispute), or "neutral" (comments or questions) regarding a previous tweet in a conversation [35,37].…”