Understanding the behavior of a network from a large scale traffic dataset is a challenging problem. Big data frameworks offer scalable algorithms to extract information from raw data, but often require a sophisticated fine-tuning and a detailed knowledge of machine learning algorithms. To streamline this process, we propose SeLINA (Self-Learning Insightful Network Analyzer), a self-tuning tool to extract knowledge from network traffic measurements. SeLINA includes different data analytics techniques providing self-learning capabilities to state-of-the-art scalable approaches, jointly with parameter autoselection to off-load the network expert from tuning. We combine both unsupervised and supervised approaches to mine data with a scalable approach. SeLINA embeds mechanisms to check if the new data fits the model, to detect possible changes in the traffic, and to, possibly automatically, trigger model rebuilding. The result is a system that offers human-readable models of the data with minimal user intervention, supporting domain experts in extracting actionable knowledge and highlighting possibly meaningful interpretations. SeLINA's current implementation runs on Apache Spark. We tested it on large collections of realworld passive network measurements from a nationwide ISP, investigating YouTube and P2P traffic. The experimental results confirmed the ability of SeLINA to provide insights and detect changes in the data that suggest further analyses.