To prevent a fall when a disturbance to walking is encountered requires sensory information about the disturbance to be perceived, integrated, and then used to generate an appropriate corrective response. Prior research has shown that feedback of whole-body motion drives this corrective response. Here, we hypothesized that young adults also use whole-body motion to perceive locomotor disturbances. 15 subjects performed a locomotor discrimination task in which the supporting leg was slowed during stance every 8-12 steps to emulate subtle slips. The perception threshold of these disturbances was determined using a psychometrics approach and found to be 0.08 ± 0.03 m/s. Whole-body feedback was examined through center-of-mass (CoM) kinematics and whole-body angular momentum (WBAM). Perturbation-induced deviations of CoM and WBAM were calculated in response to the two perturbation levels nearest each subject's perception threshold. Consistent with our hypothesis, we identified significantly higher perturbation-induced deviations for perceived perturbations in sagittal-plane WBAM, anteroposterior CoM velocity, and mediolateral CoM position, velocity, and acceleration. Because whole-body motion is not sensed directly but instead arises from the integration of various sensory feedback signals, we also explored local sensory feedback contributions to the perception of locomotor disturbances. Local sensory feedback was estimated through kinematic analogues of vision (head angle), vestibular (head angular velocity), proprioception (i.e., sagittal hip, knee, and ankle angles), and somatosensation (i.e., anterior-posterior & mediolateral center-of-pressure, COP). We identified significantly higher perturbation-induced deviations for perceived perturbations in sagittal-plane ankle angle only. These results provide evidence for both whole-body feedback and ankle proprioception as important for the perception of subtle slip-like locomotor disturbances in young adults. Our interpretation is ankle proprioception is a dominant contributor to estimates of whole-body motion to perceive locomotor disturbances.