1997
DOI: 10.2307/749783
|View full text |Cite
|
Sign up to set email alerts
|

Young Children's Intuitive Models of Multiplication and Division

Abstract: In this study, an intuitive model was defined as an internal mental structure corresponding to a class of calculation strategies. A sample of female students was observed 4 times during Grades 2 and 3 as they solved the same set of 24 word problems. From the correct responses, 12 distinct calculation strategies were identified and grouped into categories from which the children's intuitive models of multiplication and division were inferred. It was found that the students used 3 main intuitive models: direct c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

5
69
1
24

Year Published

2002
2002
2018
2018

Publication Types

Select...
7
3

Relationship

0
10

Authors

Journals

citations
Cited by 141 publications
(99 citation statements)
references
References 8 publications
5
69
1
24
Order By: Relevance
“…The current study focuses on the first three of these aspects, on the domain of multidigit arithmetic. In the domain of elementary or simple arithmetic, strategy use has been studied extensively: in elementary addition and subtraction (e.g., Carr & Jessup, 1997;Carr & Davis, 2001;Torbeyns, Verschaffel, & Ghesquière, 2004, 2005, in elementary multiplication (e.g., Anghileri, 1989;Imbo & Vandierendonck, 2007;Lemaire & Siegler, 1995;Mabbott & Bisanz, 2003;Mulligan & Mitchelmore, 1997;Sherin & Fuson, 2005;Siegler, 1988b), and in elementary division (e.g., Robinson et al, 2006). By contrast, research on solution strategies in complex or multidigit arithmetic problems is less extensive, but there is a growing body of studies in multidigit addition and subtraction (e.g., Beishuizen, 1993;Beishuizen, Van Putten, & Van Mulken, 1997;Blöte al., 2001;Torbeyns, Verschaffel, & Ghesquière, 2006) and in multidigit multiplication and division (e.g., Ambrose, Baek, & Carpenter, 2003;Buijs, 2008;Hickendorff, Heiser, Van Putten, & Verhelst, 2009;Hickendorff & Van Putten, 2012;Hickendorff, Van Putten, Verhelst, & Heiser, 2010;Van Putten, Van den Brom-Snijders, & Beishuizen, 2005).…”
Section: Solution Strategiesmentioning
confidence: 99%
“…The current study focuses on the first three of these aspects, on the domain of multidigit arithmetic. In the domain of elementary or simple arithmetic, strategy use has been studied extensively: in elementary addition and subtraction (e.g., Carr & Jessup, 1997;Carr & Davis, 2001;Torbeyns, Verschaffel, & Ghesquière, 2004, 2005, in elementary multiplication (e.g., Anghileri, 1989;Imbo & Vandierendonck, 2007;Lemaire & Siegler, 1995;Mabbott & Bisanz, 2003;Mulligan & Mitchelmore, 1997;Sherin & Fuson, 2005;Siegler, 1988b), and in elementary division (e.g., Robinson et al, 2006). By contrast, research on solution strategies in complex or multidigit arithmetic problems is less extensive, but there is a growing body of studies in multidigit addition and subtraction (e.g., Beishuizen, 1993;Beishuizen, Van Putten, & Van Mulken, 1997;Blöte al., 2001;Torbeyns, Verschaffel, & Ghesquière, 2006) and in multidigit multiplication and division (e.g., Ambrose, Baek, & Carpenter, 2003;Buijs, 2008;Hickendorff, Heiser, Van Putten, & Verhelst, 2009;Hickendorff & Van Putten, 2012;Hickendorff, Van Putten, Verhelst, & Heiser, 2010;Van Putten, Van den Brom-Snijders, & Beishuizen, 2005).…”
Section: Solution Strategiesmentioning
confidence: 99%
“…As children develop more sophisticated procedures for the numeric calculation of grid squares, they can realize that the formula "Area = Length x Width (A=LxW)" for measuring rectangular figures is a faster alternative than employing the square counting method (Outhred & Mitchelmore, 2000). Thus, it is argued that seeing the structure of rectangular arrays should be more sophisticated than seeing the repeated addition model and set model of multiplication (i.e., 2x3 can be modeled as two groups of 3) (Mulligan & Mitchelmore, 1997).…”
Section: Concepts Involved In Area and Area Measurement And The Area mentioning
confidence: 99%
“…Las estrategias que los niños emplean en la resolución de estos problemas y los diferentes niveles de éxito alcanzados han puesto de manifiesto la dificultad que tienen para comprender las diferentes situaciones multiplicativas (Clark y Pere Ivars y Ceneida Fernández Kamii, 1996;García, Vázquez y Zarzosa, 2013;Mulligan y Mitchelmore, 1997;Peled y Nesher, 1988). Esta investigación tiene como objetivo caracterizar la evolución del nivel de éxito y de las estrategias en los problemas de estructura multiplicativa a lo largo de la Educación Primaria (6-12 años).…”
unclassified