Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Objective: To examine the absolute and relative changes in skeletal muscle (SM) size using whole body magnetic resonance imaging (MRI) in response to heavy resistance training (RT). Method: Three young men trained three days a week for 16 weeks. Results: MRI measured total SM mass and fat free mass (FFM) had increased by 4.2 kg and 2.6 kg respectively after resistance training. Conclusions: RT induces larger increases in SM mass than in FFM. RT induced muscle hypertrophy does not occur uniformly throughout each individual muscle or region of the body. Therefore the distribution of muscle hypertrophy and total SM mass are important for evaluating the effects of total body RT on muscle size.A ccurate measurements of skeletal muscle (SM) mass and distribution in humans are important for studies of SM hypertrophy response to heavy resistance training (RT). Currently, the most accurate in vivo methods of measuring SM mass are multiscan magnetic resonance imaging (MRI) and computed tomography.1 Despite its safety, most MRI studies have only evaluated regional-for example, arms, trunk, and legs-SM mass. 1 We recently reported whole body MRI using a contiguous slice by slice (no interslice gap) method to evaluate total SM mass and its distribution.2 Using this approach, the distribution of RT induced whole body SM hypertrophy can be investigated.To date, most studies 3 4 have only evaluated limb muscle hypertrophy, and very few have reported RT induced muscle hypertrophy in the trunk region.5 More importantly, the distribution of the relative increases in RT induced muscle hypertrophy has not been reported. Thus the purpose of this pilot study was to examine the absolute and relative changes in SM size using contiguous whole body MRI scans in response to RT. METHODSThree healthy young men (age 20-21 years) volunteered for the study. All were physically active, but none had participated in RT before the start of the programme. All subjects signed informed consent documents. The department's ethical commission approved the study.RT was carried out three days a week for 16 weeks. Three lower body (squat, knee extension, and knee flexion) and two upper body (bench press and latissimus dorsi pull down) exercises were performed. Workouts consisted of a warm up set followed by three sets to failure of 8-12 repetitions for each of the five exercises. The loads were progressively increased to maintain this range of repetitions per set. One repetition maximum (1RM) strength was determined by progressively increasing the weight lifted until the subject failed to lift the weight through a full rage of motion. Strength of the squat was assessed using the 3RM test.Total body SM distribution and mass were measured using an MRI 1.5-T scanner (GE Signa, Milwaukee, Wisconsin, USA) with spin echo sequence (TR, 1500 milliseconds; TE, 17 milliseconds).2 Contiguous transverse images with 1.0 cm slice thickness (no interslice gap) were obtained from the first cervical vertebra to the ankle joints for each subject. Four sets extended from the...
Objective: To examine the absolute and relative changes in skeletal muscle (SM) size using whole body magnetic resonance imaging (MRI) in response to heavy resistance training (RT). Method: Three young men trained three days a week for 16 weeks. Results: MRI measured total SM mass and fat free mass (FFM) had increased by 4.2 kg and 2.6 kg respectively after resistance training. Conclusions: RT induces larger increases in SM mass than in FFM. RT induced muscle hypertrophy does not occur uniformly throughout each individual muscle or region of the body. Therefore the distribution of muscle hypertrophy and total SM mass are important for evaluating the effects of total body RT on muscle size.A ccurate measurements of skeletal muscle (SM) mass and distribution in humans are important for studies of SM hypertrophy response to heavy resistance training (RT). Currently, the most accurate in vivo methods of measuring SM mass are multiscan magnetic resonance imaging (MRI) and computed tomography.1 Despite its safety, most MRI studies have only evaluated regional-for example, arms, trunk, and legs-SM mass. 1 We recently reported whole body MRI using a contiguous slice by slice (no interslice gap) method to evaluate total SM mass and its distribution.2 Using this approach, the distribution of RT induced whole body SM hypertrophy can be investigated.To date, most studies 3 4 have only evaluated limb muscle hypertrophy, and very few have reported RT induced muscle hypertrophy in the trunk region.5 More importantly, the distribution of the relative increases in RT induced muscle hypertrophy has not been reported. Thus the purpose of this pilot study was to examine the absolute and relative changes in SM size using contiguous whole body MRI scans in response to RT. METHODSThree healthy young men (age 20-21 years) volunteered for the study. All were physically active, but none had participated in RT before the start of the programme. All subjects signed informed consent documents. The department's ethical commission approved the study.RT was carried out three days a week for 16 weeks. Three lower body (squat, knee extension, and knee flexion) and two upper body (bench press and latissimus dorsi pull down) exercises were performed. Workouts consisted of a warm up set followed by three sets to failure of 8-12 repetitions for each of the five exercises. The loads were progressively increased to maintain this range of repetitions per set. One repetition maximum (1RM) strength was determined by progressively increasing the weight lifted until the subject failed to lift the weight through a full rage of motion. Strength of the squat was assessed using the 3RM test.Total body SM distribution and mass were measured using an MRI 1.5-T scanner (GE Signa, Milwaukee, Wisconsin, USA) with spin echo sequence (TR, 1500 milliseconds; TE, 17 milliseconds).2 Contiguous transverse images with 1.0 cm slice thickness (no interslice gap) were obtained from the first cervical vertebra to the ankle joints for each subject. Four sets extended from the...
Objective: To examine the absolute and relative changes in skeletal muscle (SM) size using whole body magnetic resonance imaging (MRI) in response to heavy resistance training (RT). Method: Three young men trained three days a week for 16 weeks. Results: MRI measured total SM mass and fat free mass (FFM) had increased by 4.2 kg and 2.6 kg respectively after resistance training. Conclusions: RT induces larger increases in SM mass than in FFM. RT induced muscle hypertrophy does not occur uniformly throughout each individual muscle or region of the body. Therefore the distribution of muscle hypertrophy and total SM mass are important for evaluating the effects of total body RT on muscle size.A ccurate measurements of skeletal muscle (SM) mass and distribution in humans are important for studies of SM hypertrophy response to heavy resistance training (RT). Currently, the most accurate in vivo methods of measuring SM mass are multiscan magnetic resonance imaging (MRI) and computed tomography.1 Despite its safety, most MRI studies have only evaluated regional-for example, arms, trunk, and legs-SM mass. 1 We recently reported whole body MRI using a contiguous slice by slice (no interslice gap) method to evaluate total SM mass and its distribution.2 Using this approach, the distribution of RT induced whole body SM hypertrophy can be investigated.To date, most studies 3 4 have only evaluated limb muscle hypertrophy, and very few have reported RT induced muscle hypertrophy in the trunk region.5 More importantly, the distribution of the relative increases in RT induced muscle hypertrophy has not been reported. Thus the purpose of this pilot study was to examine the absolute and relative changes in SM size using contiguous whole body MRI scans in response to RT. METHODSThree healthy young men (age 20-21 years) volunteered for the study. All were physically active, but none had participated in RT before the start of the programme. All subjects signed informed consent documents. The department's ethical commission approved the study.RT was carried out three days a week for 16 weeks. Three lower body (squat, knee extension, and knee flexion) and two upper body (bench press and latissimus dorsi pull down) exercises were performed. Workouts consisted of a warm up set followed by three sets to failure of 8-12 repetitions for each of the five exercises. The loads were progressively increased to maintain this range of repetitions per set. One repetition maximum (1RM) strength was determined by progressively increasing the weight lifted until the subject failed to lift the weight through a full rage of motion. Strength of the squat was assessed using the 3RM test.Total body SM distribution and mass were measured using an MRI 1.5-T scanner (GE Signa, Milwaukee, Wisconsin, USA) with spin echo sequence (TR, 1500 milliseconds; TE, 17 milliseconds).2 Contiguous transverse images with 1.0 cm slice thickness (no interslice gap) were obtained from the first cervical vertebra to the ankle joints for each subject. Four sets extended from the...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.