The optical properties of a Ho(3+) /Yb(3+) co-doped CaSc2 O4 oxide material are investigated in detail. The spectral properties are described as a function of doping concentrations. The efficient Yb(3+) →Ho(3+) energy transfer is observed. The transfer efficiency approaches 50 % before concentration quenching. The concentration-optimized sample exhibits a strong green emission accompanied with a weak red emission, showing perfect green monochromaticity. The results of the spectral distribution, power dependence, and lifetime measurements are presented. The green, red, and near-infrared (NIR) emissions around 545, 660, and 759 nm are assigned to the (5) F4 +(5) S2 →(5) I8 , (5) F5 →(5) I8 , and (5) F4 +(5) S2 →(5) I7 transitions of Ho(3+) , respectively. The detailed study reveals the upconversion luminescence mechanism involved in a novel Ho(3+) /Yb(3+) co-doped CaSc2 O4 oxide material.