Objective
Yupingfeng Powder (YPF), a kind of preventative patent medicine, is chosen for treatment of coronavirus disease 2019 (COVID-19) due to its high frequency application in respiratory tract diseases, such as chronic obstructive pulmonary disease, asthma, respiratory tract infections, and pneumonia, with the advantage of reducing the relapse rate and the severity. However, the active components of YPF and the mechanisms of components affecting COVID-19 are unclear. This study aimed to determine active constituents and elucidate its potential mechanisms.
Methods
Ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q/TOF-MS) and liquid chromatography-triple quadrupole mass spectrometry (LC-QQQ-MS) were used to determine the components and absorbable constituents of YPF. Secondly, TCMSP, Drugbank, Swiss and PharmMapper were used to search the targets of absorbable bioactive constituents of YPF, and the targets of COVID-19 were identified based on GeneCards and OMIM databases. STRING database was used to filter the possible inter-protein interactions. Thirdly, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis were performed to identify molecular function and systemic involvement of target genes.
Results
A total of 61 components of YPF and 36 absorbable constituents were identified through UPLC-Q/TOF-MS. Wogonin, prim-
O
-glucosylcimifugin, 5-
O
-methylvisamminol, astragaloside IV and 5-
O
-methylvisamminol (hydroxylation) were vital constituents for the treatment of COVID-19, and RELA, TNF, IL-6, MAPK14 and MAPK8ere recognized as key targets of YPF. The major metabolic reactions of the absorbed constituents of YPF were demethylation, hydroxylation, sulfation and glucuronidation. GO and KEGG pathway analysis further showed that the most important functions of YPF were T cell activation, response to molecule of bacterial origin, cytokine receptor binding, receptor ligand activity, cytokine activity, IL-17 signaling pathway, Chagas disease, lipid and atherosclerosis, etc.
Conclusion
The approach of combining UPLC-Q/TOF-MS with network pharmacology is an effective tool to identify potentially bioactive constituents of YPF and its key targets on treatment of COVID-19.