The work presents a microelectromechanical system (MEMS) based magnetometer, targeting compass applications performance, which measures magnetic fields along an in-plane direction. The magnetometer is fabricated with the surface micromachining process used for consumer gyroscopes, accelerometers, and recently proposed out-of-plane magnetometers. The magnetometer is based on the Lorentz force principle, so to avoid the need for magnetic materials integration. It features an area of 282 x 1095 µm 2 , and it is wafer-wafer packaged at a nominal pressure (0.35 mbar) similar to the one used for gyroscopes. In agreement with theoretical predictions, operation is demonstrated both at-resonance and off-resonance: in both situations the measured resolution, normalized to unit bandwidth and applied Lorentz current, is about 120 nT·mA/ √ Hz, but the maximum sensing bandwidth is extended from 4 Hz (at resonance) to 42Hz in off-resonance mode, which copes with consumer specifications. Within magnetic fields of ±5 mT, the device shows measured linearity errors <0.5% of the full-scale-range (demonstrating a large linearity) and a cross-axis rejection of ∼50 dB. The bias stability in off-resonance operation mode (80 nT·mA at 100 s) improves by a factor 100 with respect to resonance operation.