RNA modification has recently emerged as an important mechanism underlying gene diversity linked to behavioral regulation. The conversion of adenosine to inosine by the ADAR family of enzymes is a particularly important RNA modification as it impacts the physiological readout of protein-coding genes. However, not all variants of ADAR appear to act solely on RNA. ADAR1 binds directly to DNA when it is in a non-canonical, left handed, "Z" conformation, but little is known about the functional relevance of this interaction. Here we report that ADAR1 binds to Z-DNA in an activity-dependent manner and that fear extinction learning leads to increased ADAR1 occupancy at DNA repetitive elements, with targets adopting a Z-DNA structure at sites of ADAR1 recruitment.Knockdown of ADAR1 leads to an inability to modify a previously acquired memory trace and this is associated with a concomitant change in DNA structure and a decrease in RNA editing. These findings suggest a novel mechanism of learning-induced gene regulation whereby ADAR1 physically interacts with Z-DNA in order to mediate its effect on RNA, and both are required for memory flexibility following fear extinction learning.