It is still a challenge for wastewater treatment to develop efficient yet low-cost photocatalysts on a large scale. Herein, a facile yet efficient method was devised to successfully synthesize ZnO/Fe2O3 nanoflowers (NFs) by using metal organic framework ZIF-8 as the precursor. The photocatalytic activities of the as-prepared hetero-ZnO/Fe2O3 NFs are purposefully evaluated by photocatalytic degradation of methylene blue (MB) and methyl orange (MO) under UV light irradiation. The resulting ZnO/Fe2O3 NFs display even higher photocatalytic activities than those of single-phase ZnO and Fe2O3 as a photocatalyst for the degradation of both MB ad MO. Particularly, nearly 100% MB can be photocatalytically degraded in 90 min under UV light irradiation using the hetero-NFs photocatalyst. The enhanced photocatalytic properties are probably ascribed to the synergistic contributions from the suitable band alignment of ZnO and Fe2O3, large surface area, and strong light absorption property. Radical scavenger experiments prove that the photogenerated holes, ·OH and ·O2-, play key roles in photocatalytic degradation process of organic dyes. Accordingly, the photocatalytic degradation mechanism of hetero-ZnO/Fe2O3 NFs towards dyes is tentatively proposed. The work contributes an effective way to rationally design and fabricate advanced photocatalysts with heterojunction structures for photocatalytic applications.