Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Urban green infrastructure such as sustainable urban drainage systems are potential providers of ecosystem services. This paper reviews the field studies that empirically verify the potential benefits of SUDS. The cultural, provisioning, supporting, and regulating ecosystem services investigated in real cases have been studied and classified according to climatology (except for the control of urban hydrology, which has been widely corroborated). Although successful cases of runoff decontamination are numerous, there is heterogeneity in the results of the systems beyond those associated with climatic differences. The other ecosystem services have not been as widely studied, giving very variable and even negative results in some cases such as climate change control (in some instances, these techniques can emit greenhouse gases). Installations in temperate climates are, by far, the most studied. These services derive from the biological processes developed in green infrastructure and they depend on climate, so it would be advisable to carry out specific studies that could serve as the basis for a design that optimizes potential ecosystem services, avoiding possible disservices.
Urban green infrastructure such as sustainable urban drainage systems are potential providers of ecosystem services. This paper reviews the field studies that empirically verify the potential benefits of SUDS. The cultural, provisioning, supporting, and regulating ecosystem services investigated in real cases have been studied and classified according to climatology (except for the control of urban hydrology, which has been widely corroborated). Although successful cases of runoff decontamination are numerous, there is heterogeneity in the results of the systems beyond those associated with climatic differences. The other ecosystem services have not been as widely studied, giving very variable and even negative results in some cases such as climate change control (in some instances, these techniques can emit greenhouse gases). Installations in temperate climates are, by far, the most studied. These services derive from the biological processes developed in green infrastructure and they depend on climate, so it would be advisable to carry out specific studies that could serve as the basis for a design that optimizes potential ecosystem services, avoiding possible disservices.
The linear nature of highways and other transportation settings makes management of stormwater runoff (SWR) generated by those surfaces a special consideration compared to stormwater management in urban settings. This article summarizes the most significant pollutants found in SWR from highways as well as the best management practices, with an emphasis on low impact development (LID), used to alleviate the impact of these pollutants on the waterways with which they come in contact. LID strategies discussed in terms of construction and pollutant attenuation capabilities include vegetated roadsides, vegetated filter strips, swales, bioretention filters, bioslopes, compost‐amended soils, and pervious pavements.
Many cities around the world are expanding and this trend in urbanization is expected to sharply increase over coming decades. At the same time, the integration of green and blue spaces is widely promoted in urban development, potentially offering numerous benefits for biodiversity. This is particularly relevant for urban waterbodies, a type of ecosystem present in most cities. However, site managers often lack the knowledge base to promote biodiversity in these waterbodies, which are generally created to provide other ecosystem services. To address this, our review presents guidelines for promoting biodiversity in urban ponds. We found a total of 516 publications indexed in ISI Web of Sciences related to this topic, of which 279 were retained for the purposes of our review. The biodiversity of urban ponds, measured by species richness, appears to be generally lower than in rural ponds; however, urban ponds often support threatened species. Furthermore, if well managed, urban ponds have the potential to support a much greater biodiversity than they currently do. Indeed, this review shows that a range of urban factors can impair or promote pond biodiversity, including many that can easily be controlled by site managers. Local factors include design (surface area, pond depth, banks and margins, shade, shoreline irregularity), water quality (conductivity, nutrients, heavy metals), and hydroperiod and biotic characteristics (stands of vegetation, fish, invasive species). Important regional factors include several indicators of urbanization (roads, buildings, density of population, impervious surfaces, car traffic), and the presence of other wetlands or green spaces in the surrounding landscape. We considered each of these factors and their potential impact on freshwater biodiversity. Taking into account the management measures listed in the publications reviewed, we have proposed a framework for the management of urban ponds, with guidelines to promote biodiversity and other ecosystem services, and to avoid ecosystem disservices or the creation of ecological traps. At the city scale, the biodiversity of a pondscape benefits from a high diversity of pond types, differing in their environmental characteristics and management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.