Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Hybrid materials formed by carbon fullerenes and layered materials have emerged due to their advantages for several technological applications, and phosphorene arises as a promising two-dimensional semiconductor for C60 adsorption. However, the properties of phosphorenefullerene hybrids remain mainly unexplored. In this work, we employed density functional theory to obtain structures, adsorption energies, electronic/optical properties, binding (AIM, NBO), and energy decomposition analyses (ALMO-EDA) of nanostructures formed by phosphorene and fullerenes (C24 to C70). We find fullerenes form covalent and non-covalent complexes with phosphorene depending on the molecular size, showing remarkable stability even in solution. Two classes of covalent complexes arise by cycloaddition-like reactions: the first class, where short-range effects (charge-transfer and polarization) determines the stability; and the second one, where short-range effects decay to avoid steric repulsion, and balanced longrange forces (electrostatics and dispersion) favors the stability. Otherwise, high-size fullerenes (C50 to C70) only form non-covalent complexes due to strong repulsion at shorter intermolecular distances and lack of dissociation barriers. In terms of electronic properties, fullerenes act as mild p-dopants for phosphorene, increasing its polar character and ability to acquire induced dipole moments (polarizability). Also, small energy-bandgap fullerenes (<0.8 eV) largely increase the phosphorene metallic character. We also note fullerenes retain their donor/acceptor properties upon adsorption, acting as active sites for orbital-controlled interactions and maximizing the phosphorene light absorbance at the UV-Vis region. Finally, we strongly believe our study will inspire future experimental/theoretical studies focused on phosphorene-fullerene uses for storage, anode materials, sensing, phosphorene bandgap engineering, and optoelectronics.<br>
Hybrid materials formed by carbon fullerenes and layered materials have emerged due to their advantages for several technological applications, and phosphorene arises as a promising two-dimensional semiconductor for C60 adsorption. However, the properties of phosphorenefullerene hybrids remain mainly unexplored. In this work, we employed density functional theory to obtain structures, adsorption energies, electronic/optical properties, binding (AIM, NBO), and energy decomposition analyses (ALMO-EDA) of nanostructures formed by phosphorene and fullerenes (C24 to C70). We find fullerenes form covalent and non-covalent complexes with phosphorene depending on the molecular size, showing remarkable stability even in solution. Two classes of covalent complexes arise by cycloaddition-like reactions: the first class, where short-range effects (charge-transfer and polarization) determines the stability; and the second one, where short-range effects decay to avoid steric repulsion, and balanced longrange forces (electrostatics and dispersion) favors the stability. Otherwise, high-size fullerenes (C50 to C70) only form non-covalent complexes due to strong repulsion at shorter intermolecular distances and lack of dissociation barriers. In terms of electronic properties, fullerenes act as mild p-dopants for phosphorene, increasing its polar character and ability to acquire induced dipole moments (polarizability). Also, small energy-bandgap fullerenes (<0.8 eV) largely increase the phosphorene metallic character. We also note fullerenes retain their donor/acceptor properties upon adsorption, acting as active sites for orbital-controlled interactions and maximizing the phosphorene light absorbance at the UV-Vis region. Finally, we strongly believe our study will inspire future experimental/theoretical studies focused on phosphorene-fullerene uses for storage, anode materials, sensing, phosphorene bandgap engineering, and optoelectronics.<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.