2021
DOI: 10.2478/tmmp-2021-0015
|View full text |Cite
|
Sign up to set email alerts
|

Zariski Topologies on Graded Ideals

Abstract: In this paper, we show there are strong relations between the algebraic properties of a graded commutative ring R and topological properties of open subsets of Zariski topology on the graded prime spectrum of R. We examine some algebraic conditions for open subsets of Zariski topology to become quasi-compact, dense, and irreducible. We also present a characterization for the radical of a graded ideal in R by using topological properties.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 6 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?