Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In Ontario, Canada, Fusarium graminearum Schwabe causes Gibberella ear rot (GER) in maize, resulting in the accumulation of mycotoxins, mainly deoxynivalenol (DON), DON-3-glucoside (DON-3G) and zearalenone (ZEN) in infected kernels. Fungicides can be an important tool for managing GER and DON and other Fusarium mycotoxins in maize. Until recently, all fungicides available to growers were triazoles, thus no resistance management strategy through fungicide use was possible. In this study, a novel carboxamide fungicide active ingredient (pydiflumetofen) was evaluated against conventional triazole fungicides and mixtures for: (1) effectiveness on mycotoxins (2) optimal application timing; and (3) efficacy of application, with and without an insecticide, under natural and inoculated-misted conditions. The best timing for fungicide application was at full silk, resulting in the highest reduction of GER symptoms and lowest accumulation of F. graminearum mycotoxins in harvested grain. DON and DON-3G concentrations were reduced by at least 50% with a fungicide application at full silk. Fungicide treatments did not affect fumonisin concentrations in grain. Pydiflumetofen (94 g active ingredients (AI)/ha) and fungicides containing pydiflumetofen (75-94 g AI/ha) were similar to standard triazole fungicides (prothioconazole at 200 g AI/ha and metconazole at 90 g AI/ha) for reducing GER and F. graminearum mycotoxins under misted-inoculated plots and commercial field conditions; as a result, we expect pydiflumetofen to be competitive with triazole-only chemistries in the marketplace, which should delay the onset of fungicide resistance.
In Ontario, Canada, Fusarium graminearum Schwabe causes Gibberella ear rot (GER) in maize, resulting in the accumulation of mycotoxins, mainly deoxynivalenol (DON), DON-3-glucoside (DON-3G) and zearalenone (ZEN) in infected kernels. Fungicides can be an important tool for managing GER and DON and other Fusarium mycotoxins in maize. Until recently, all fungicides available to growers were triazoles, thus no resistance management strategy through fungicide use was possible. In this study, a novel carboxamide fungicide active ingredient (pydiflumetofen) was evaluated against conventional triazole fungicides and mixtures for: (1) effectiveness on mycotoxins (2) optimal application timing; and (3) efficacy of application, with and without an insecticide, under natural and inoculated-misted conditions. The best timing for fungicide application was at full silk, resulting in the highest reduction of GER symptoms and lowest accumulation of F. graminearum mycotoxins in harvested grain. DON and DON-3G concentrations were reduced by at least 50% with a fungicide application at full silk. Fungicide treatments did not affect fumonisin concentrations in grain. Pydiflumetofen (94 g active ingredients (AI)/ha) and fungicides containing pydiflumetofen (75-94 g AI/ha) were similar to standard triazole fungicides (prothioconazole at 200 g AI/ha and metconazole at 90 g AI/ha) for reducing GER and F. graminearum mycotoxins under misted-inoculated plots and commercial field conditions; as a result, we expect pydiflumetofen to be competitive with triazole-only chemistries in the marketplace, which should delay the onset of fungicide resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.