The location of the Zn(2+) cation in Zn-exchanged chabazite has been studied by the periodical density functional method. Chabazite was chosen as a zeolite model, because it contains three different types of rings commonly found in the zeolite structures: four-, six-, and eight-membered rings. Two aluminum atoms have been employed to substitute the silicon atoms in the same D6R unit cell of the zeolite framework. This leads to different arrangements for the Brønsted site pair and the Zn(II) cation. The two Brønsted sites are found to be more stable when placed in the small ring (4T ring) than in the other rings. This suggests that the most reactive Brønsted sites are located in the large rings. Two Brønsted sites are most stable when the O(H)-Al-O-Si-O(H)-Al sequence is followed in the same ring instead of being located in two different rings. This resembles the aluminum distribution in the small four-membered ring and agrees with bond order conservation rules. The cation stability is markedly influenced by the distortions of the framework. Other factors that also contribute to the stabilization are the aluminum content near the cation and the stability of the original Brønsted sites. The Zn(2+) cation is more stable in the large rings than in the small ones, the six-membered one being the most stable configuration. In the small rings, the cation is, therefore, more reactive. Two different probe molecules have been used to study the interaction with the Zn(II) cation: water and methane. These probe molecules can extract the active center from its original position. For the water molecule, this effect is large and leads to a high framework relaxation. The value of the binding energy of this molecule to the active sites is influenced by these framework relaxations as well as by the cationic position environment. For weakly interacting methane, these effects are significantly less.