Abstract:Abstract. We study spectral properties of the flowẋ = 1/F (x, y),ẏ = 1/λF (x, y) on the 2-torus. We show that, in general, the speed of approximation in cyclic approximation gives an upper bound on the Hausdorff dimension of the supports of spectral measures. We use this to prove that for generic pairs (F, λ) the spectrum of the flow on the torus is singular continuous with all spectral measures supported on sets of zero Hausdorff dimension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.