Freezing of Gait (FOG) is an episodic absence of forward movement in Parkinson's Disease (PD) patients and represents an onset of disabilities. FOG hinders daily activities and increases fall risk. There is high demand for automating the process of FOG detection due to its impact on health and well being of individuals. This work presents WiFreeze, a noninvasive, line of sight, and lighting agnostic WiFi-based sensing system, which exploits ambient 5G spectrum for detection and classification of FOG. The core idea is to utilize the amplitude variations of wireless Channel State Information (CSI) to differentiate between FOG and activities of daily life. A total of 225 events with 45 FOG cases are captured from 15 patients with the help of 30 subcarriers and classification is performed with a deep neural network. Multiresolution scalograms are proposed for time-frequency signatures of human activities, due to their ability to capture and detect transients in CSI signals caused by transitions in human movements. A very deep Convolutional Neural Network (CNN), VGG-8K, with 8K neurons each, in fully connected layers is engineered and proposed for transfer learning with multiresolution scalogram features for detection of FOG. The proposed WiFreeze system outperforms all existing wearable and vision-based systems as well as deep CNN architectures with the highest accuracy of 99.7% for FOG detection. Furthermore, the proposed system provides the highest classification accuracies of 94.3% for voluntary stop and 97.6% for walking slow activities, with improvements of 9% and 23%, respectively, over the best performing state-of-the-art deep CNN architecture.China [3]. Every 1 in 37 people in the United Kingdom are diagnosed with PD at some stage of their life [1]. PD is caused by the neuronal loss and damage in the motor area of the brain, particularly the centers of the limbic, visceromotor, and somatomotor systems [4]. Most PD patients experience difficulty in walking, which indicates an onset of gait, balance, and other disabilities [5]. Half of the PD patients experience Freezing of Gate (FOG) symptoms, which represent an episodic absence of forward feet movement, despite of the intention for forward progress [6]. The frequency as well as the duration of FOG episodes increases with the progression of PD. FOG and falls are both interconnected phenomena, and FOG is known to hinder daily activities and increase fall risk [7], resulting in severe consequences for older adults.Conventional clinical methods to validate FOG occurrences and their severity are based on self-report questionnaires [8] and doctors' reports based on direct observation. Due to the impact of FOG on population in general and falls in older adults in particular, there is a high demand for automating the process of detection and recognition of FOG events. Currently, various methods using wearable devices and vision-based systems have been exploited for FOG detection. A number of systems have been proposed with wearable sensors or cameras for FOG detectio...