The purpose of this study was to design and characterize a zero-order bioresorbable reservoir delivery system (BRDS) for diffusional or osmotically controlled delivery of model drugs including macromolecules. The BRDS was manufactured by casting hollow cylindrical poly (lactic acid) (PLA): polyethylene glycol (PEG) membranes (10 x 1.6 mm) on a stainless steel mold. Physical properties of the PLA:PEG membranes were characterized by solid-state thermal analysis. After filling with drug (5 fluorouracil [5FU] or fluorescein isothiocyanate [FITC]-dextran:mannitol, 5:95 wt/wt mixture) and sealing with viscous PLA solution, cumulative in vitro dissolution studies were performed and drug release monitored by ultraviolet (UV) or florescence spectroscopy. Statistical analysis was performed using Minitab ® (Version 12). Differential scanning calorimetry thermograms of PLA:PEG membranes dried at 25°C lacked the crystallization exotherms, dual endothermal melting peaks, and endothermal glass transition observed in PLA membranes dried at -25°C. In vitro release studies demonstrated zero-order release of 5FU for up to 6 weeks from BRDS manufactured with 50% wt/wt PEG (drying temperature, 25°C). The release of FITC dextrans of molecular weights 4400, 42 000, 148 000, and 464 000 followed zero-order kinetics that were independent of the dextran molecular weight. When monitored under different concentrations of urea in the dissolution medium, the release rate of FITC dextran 42 000 showed a linear correlation with the calculated osmotic gradient(∆π ). PEG inclusion at 25°C enables manufacture of uniform, cylindrical PLA membranes of controlled permeability. The absence of molecular weight effects and a linear dependence of FITCdextran release rate on∆π confirm that the BRDS can be modified to release model macromolecules by an osmotically controlled mechanism.