2016
DOI: 10.5539/jmr.v8n5p37
|View full text |Cite
|
Sign up to set email alerts
|

Zero-Sum Coefficient Derivations in Three Variables of Triangular Algebras

Abstract: Under mild assumptions Benkovi\v{c} showed that an $f$-derivation of a triangular algebra is a derivation when the sum of the coefficients of the multilinear polynomial $f$ is nonzero. We investigate the structure of $f$-derivations of triangular algebras when $f$ is of degree 3 and the coefficient sum is zero. The zero-sum coeffient derivations include Lie derivations (degree 2) and Lie triple derivations (degree 3), which have been previously shown to be not necessarily derivations but in standard form, i.e.… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?