“…[1][2][3] The operating temperature of piezoelectric ceramics is generally limited to one-half of the Curie point ͑T C ͒ due to loss of polarization, typically at temperatures lower than 200°C ͓e.g., 150°C for the conventional piezoelectric materials based on the Pb͑Zr 1−x Ti x ͒O 3 ͑PZT͔͒ with a Curie temperature, T C = 386°C. 4 After excellent piezoelectric properties for ͑1 − x͒BiScO 3 -xPbTiO 3 ͑BS-PT͒ near the morphotropic phase boundary ͑MPB͒ ͑x = 0.64͒ were reported ͑piezoelectric coefficient, d 33 = 460 pC/ N, planar coupling coefficient, k p = 0.56, and T C = 450°C͒ recently, 5,6 the discovery of several promising high temperature piezoelectric materials with high performance followed in the general BiMeO 3 -PbTiO 3 system, [5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24] where Me can be a single cation of valency +3 ͑e.g., Sc 3+ and Fe 3+ ͒ or a mixture of cations with an average valence of +3 ͑e.g., Mg 1/2 Ti 1/2 and Ni 2/3 Nb 1/3 ͒. It has been proposed that the Bi substitution plays an unusual role of considerable enhancement of both Curie temperature ͑T C ͒ and tetragonality ͑c / a͒, which results from a strong coupling between Pb/Bi cations and B-site cations of strong ferroelectric activity, such as Ti, Zn, and Fe.…”