2020
DOI: 10.1090/tran/8261
|View full text |Cite
|
Sign up to set email alerts
|

Zeros of Dirichlet polynomials

Abstract: We consider a certain class of multiplicative functions f : N → C f: \mathbb N \rightarrow \mathbb C and study the distribution of zeros of Dirichlet polynomials F N ( s ) = ∑ n ≤ N f ( n ) n − s F_N(s)… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2021
2021
2022
2022

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 25 publications
0
2
0
1
Order By: Relevance
“…Dans un article récent [19], Roy et Vatwani considèrent le cas de séries de Dirichlet est une fonction arithmétique appartenant à une sous-famille (introduite dans [18]) de fonctions multiplicatives pour lesquelles les séries de Dirichlet précédentes sont absolument convergentes pour .…”
Section: éQuivalence Au Sens De Bohr Sommes Partielles De La Zeta De ...unclassified
“…Dans un article récent [19], Roy et Vatwani considèrent le cas de séries de Dirichlet est une fonction arithmétique appartenant à une sous-famille (introduite dans [18]) de fonctions multiplicatives pour lesquelles les séries de Dirichlet précédentes sont absolument convergentes pour .…”
Section: éQuivalence Au Sens De Bohr Sommes Partielles De La Zeta De ...unclassified
“…Nevertheless it is well known the regularity of the non-trivial zeros of ζ(s) in the sense that, all those found so far, are located on the line s = 1/2. Among the papers dealing with the issues raised on the distribution of the zeros of the partials sums of the Riemann zeta function, we suggest [7,8,10,15,[18][19][20]24]; on the implication of the truth of the Riemann Hypothesis when those zeros are close the line s = 1 [23,Theorem III], see [22,23] and [11,12]. On Dirichlet series, properties and abscissae of convergence, read [1,Chapter 8] and [5,6].…”
Section: Introductionmentioning
confidence: 99%
“…In the same way that is relevant the abscissa of convergence for a Dirichlet series [1,p. 165] (very interesting works on this subject and generalizations can be seen, for instance, in [4,5]), it is also relevant the essential bounds for a Dirichlet polynomial. In a recent article [14] both notions, i.e., the abscissa of convergence of an ordinary Dirichlet series, whose coefficients α n are defined by…”
Section: Introductionmentioning
confidence: 99%