2017
DOI: 10.1016/j.jde.2016.11.033
|View full text |Cite
|
Sign up to set email alerts
|

Zeta-determinants of Sturm–Liouville operators with quadratic potentials at infinity

Abstract: Abstract. We consider Sturm-Liouville operators on a half line [a, ∞), a > 0, with potentials that are growing at most quadratically at infinity. Such operators arise naturally in the analysis of hyperbolic manifolds, or more generally manifolds with cusps. We establish existence and a formula for the associated zeta-determinant in terms of the Wronski-determinant of a fundamental system of solutions adapted to the boundary conditions. Despite being the natural objects in the context of hyperbolic geometry, sp… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
2

Year Published

2018
2018
2024
2024

Publication Types

Select...
4
1

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 23 publications
0
2
0
2
Order By: Relevance
“…Other examples come from singular manifolds. The following example is based on the spectral properties of operators studied [20]. The Laplacian on a manifold with cuspidal singularities in the metric decomposes into an operator with discrete spectrum, and one with continuous spectrum.…”
Section: Acknowledgementsmentioning
confidence: 99%
See 1 more Smart Citation
“…Other examples come from singular manifolds. The following example is based on the spectral properties of operators studied [20]. The Laplacian on a manifold with cuspidal singularities in the metric decomposes into an operator with discrete spectrum, and one with continuous spectrum.…”
Section: Acknowledgementsmentioning
confidence: 99%
“…We equipp the operator H with self-adjoint Robin type boundary conditions at x = a. See more in [20,Introduction]. It follows from [20, Section 1.1.3] that lim t→∞ N H (t) t 1/2 log t = 1 2π .…”
mentioning
confidence: 99%
“…Nesta subsec ¸ão apresentaremos o artigo [HLV17]. Nele investigamos o zeta-determinante de operadores de Sturm-Liouville com potenciais que possuem crescimento quadrático no infinito, ou seja, operadores da forma Pretendemos com este artigo iniciar uma discussão sobre estes operadores, paralela aos desenvolvimentos no contexto de operadores de Sturm-Liouville regularsingular, que por sua vez são motivados pela geometria de espac ¸os com singularidades do tipo c ônico.…”
Section: Zeta Determinantes De Operadores De Sturm-liouville Com Potenciais Quadráticos No Infinitounclassified
“…Na maioria dos artigos apresentados neste texto sistematizado as func ¸ões de Bessel possuem um papel central na obtenc ¸ão dos resultados. Na literatura são conhecidas diversas propriedades destas func ¸ões, em particular, em [HLV17] dedicamos uma sec ¸ão para a apresentac ¸ão das expans ões assint óticas conhecidas das func ¸ões de Bessel Modificadas.…”
Section: Zeta Determinantes De Operadores De Sturm-liouville Com Potenciais Quadráticos No Infinitounclassified