Cardiac hypertrophy, characterized by the enlargement of cardiomyocytes, is initially an adaptive response to physiological and pathological stimuli. Decompensated cardiac hypertrophy is related to fibrosis, inflammatory cytokine, maladaptive remodeling, and heart failure. Although pathological myocardial hypertrophy is the main cause of hypertrophy-related morbidity and mortality, our understanding of its mechanism is still poor. Long noncoding RNAs (lncRNAs) are noncoding RNAs that regulate various physiological and pathological processes through multiple molecular mechanisms. Recently, accumulating evidence has indicated that lncRNA-H19 is a potent regulator of the progression of cardiac hypertrophy. For the first time, this review summarizes the current studies about the role of lncRNA-H19 in cardiac hypertrophy, including its pathophysiological processes and underlying pathological mechanism, including calcium regulation, fibrosis, apoptosis, angiogenesis, inflammation, and methylation. The context within which lncRNA-H19 might be developed as a target for cardiac hypertrophy treatment is then discussed to gain better insight into the possible biological functions of lncRNA-H19 in cardiac hypertrophy.