Deposition of materials as a thin film is important for various applications, such as sensors, microelectronic devices, and membranes. There have been breakthroughs in gas-phase metal-organic framework (MOF) thin-film growth, which is more applicable to micro-and nanofabrication processes and also less harmful to the environment than solvent-based methods. Three different types of gas-phase MOF thin film deposition methods have been developed using chemical vapor deposition (CVD), atomic layer deposition (ALD), and physical vapor deposition (PVD)-CVD combined techniques. The CVD-based method basically converts metal oxide layers into MOF thin films by exposing the surface to ligand vapor. The ALD-based method allows growing MOF thin films following layer-by-layer (LBL) growth by sequentially exposing gas-phase metal and ligand precursors. The PVD-CVD method uses PVD for metal deposition and CVD for ligand deposition, which is similar to LBL growth. These gas-phase growth methods can broaden the use of MOFs in diverse areas. Herein, the current progress of gas-phase MOF thin film growth is discussed and future directions suggested.