The high ionic conductivity, lower interfacial contact resistance, enhanced safety, non-toxicity, and biodegradability bring the gel polymer electrolytes (GPEs) as a prospective electrolyte for applications in high-energy density flexible Zn-air batteries (ZABs). The present study comprehensively optimizes the procedures to obtain carboxymethyl cellulose (CMC)– polyvinyl alcohol (PVA) composite-based GPEs holding a maximum KOH amount in the polymer matrix. Optimization of the GPE has been performed and demonstrated by an in-house-developed rechargeable ZAB cells using MnO2-based air cathode and Zn anode. The optimization parameters include the ratio of PVA:CMC, concentration of PVA-CMC in DI water, and thickness of the gel polymer electrolyte. Results show that a 4 mm thick GPE prepared from a polymer membrane synthesized using PVA:CMC ratio of 5:2 at a concentration of 0.063 g/ml in DI water displayed the highest 6M KOH uptake, least charge transfer resistance of the device, higher discharge plateau, and 5-6 times more cycling compared to GPE made of PVA only. The "as-synthesized GPE" demonstrates high stability of GPE over 100 hours for a Zn-air battery device. The findings of this work shall speed up the development of Zn air batteries for applications as energy storage systems.