The assembly and disassembly of the FtsZ ring drives the division of bacteria cells, including Streptococcus pneumoniae, which causes pneumonia and meningitis. In contrast to FtsZ from other bacterial species, Streptococcus pneumoniae (Spn) FtsZ contains two tryptophan residues. Here, we demonstrate that the assembly and disassembly of Streptococcus pneumoniae FtsZ (SpnFtsZ) monomers can be monitored by the intrinsic tryptophan fluorescence of FtsZ. We found that the assembly of SpnFtsZ is closely associated with its GTPase activity. Guanosine 5′‐[β,γ‐imido]triphosphate, a nonhydrolyzable analog of GTP, stabilized the FtsZ filaments without inducing their bundling. Using intrinsic tryptophan fluorescence, light scattering, and electron microscopy, we could differentiate the effects of divalent calcium and magnesium on the assembly of FtsZ. Though Mg2+ increased the stability of the FtsZ filaments, it could not prevent the disassembly of the filaments under conditions where GTP was limiting. Thus, our results indicate that Mg2+ primarily enhances the longitudinal assembly of FtsZ. Low concentrations of Ca2+ strongly promoted the bundling of FtsZ filaments and inhibited the disassembly of the filaments, suggesting that low concentrations of Ca2+ enhance the lateral interactions between the FtsZ filaments. Interestingly, Ca2+ delayed the nucleation process of FtsZ assembly, indicating that Ca2+ exerts paradoxical effects on the assembly of FtsZ. However, higher concentrations of Ca2+ did not enhance the bundling of FtsZ filaments. In addition, Ca2+ altered the secondary structure of FtsZ and increased the fluorescence of the FtsZ‐1‐anilinonaphthalene‐8‐sulfonic acid complex, indicating that Ca2+ induces conformational changes in FtsZ. The study provides an interesting insight into the assembly of SpnFtsZ and its regulation by divalent cations.