Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Intestinal mucosal barrier damage is regarded as the critical factor through which chronic unpredictable mild stress (CUMS) leads to a variety of physical and mental health problems. However, the exact mechanism by which CUMS induces intestinal mucosal barrier damage is unclear. In this study, 14, 28, and 42 d CUMS model mice were established. The indicators related to ileal mucosal barrier damage (IMBD), the composition of the ileal microbiota and its amino acid (AA) and short-chain fatty acid (SCFA) metabolic functions, and free amino acid (FAA) and SCFA levels in the ileal lumen were measured before and after each stress period. The correlations between them are analyzed to investigate how CUMS induces intestinal mucosal barrier damage in male C57BL/6 mice. With the progression of CUMS, butyric acid (BA) levels decreased (14 and 28 d) and then increased (42 d), and IMBD progressively increased. In the late CUMS stage (42 d), the degree of IMBD is most severe and positively correlated with significantly increased BA levels (p < 0.05) in the ileal lumen and negatively correlated with significantly decreased FAAs, such as aspartic, glutamic, alanine, and glycine levels (p < 0.05). In the ileal lumen, the abundance of BA-producing bacteria (Muribaculaceae, Ruminococcus, and Butyricicoccus) and the gene abundance of specific AA degradation and BA production pathways and their related enzymes are significantly increased (p < 0.05). In addition, there is a significant decrease (p < 0.05) in the abundance of core bacteria (Prevotella, Lactobacillus, Turicibacter, Blautia, and Barnesiella) that rely on these specific AAs for growth and/or are sensitive to BA. These changes, in turn, promote further colonization of BA-producing bacteria, exacerbating the over-accumulation of BA in the ileal lumen. These results were validated by ileal microbiota in vitro culture experiments. In summary, in the late CUMS stages, IMBD is related to an excessive accumulation of BA caused by dysbiosis of the ileal microbiota and its overactive AA degradation.
Intestinal mucosal barrier damage is regarded as the critical factor through which chronic unpredictable mild stress (CUMS) leads to a variety of physical and mental health problems. However, the exact mechanism by which CUMS induces intestinal mucosal barrier damage is unclear. In this study, 14, 28, and 42 d CUMS model mice were established. The indicators related to ileal mucosal barrier damage (IMBD), the composition of the ileal microbiota and its amino acid (AA) and short-chain fatty acid (SCFA) metabolic functions, and free amino acid (FAA) and SCFA levels in the ileal lumen were measured before and after each stress period. The correlations between them are analyzed to investigate how CUMS induces intestinal mucosal barrier damage in male C57BL/6 mice. With the progression of CUMS, butyric acid (BA) levels decreased (14 and 28 d) and then increased (42 d), and IMBD progressively increased. In the late CUMS stage (42 d), the degree of IMBD is most severe and positively correlated with significantly increased BA levels (p < 0.05) in the ileal lumen and negatively correlated with significantly decreased FAAs, such as aspartic, glutamic, alanine, and glycine levels (p < 0.05). In the ileal lumen, the abundance of BA-producing bacteria (Muribaculaceae, Ruminococcus, and Butyricicoccus) and the gene abundance of specific AA degradation and BA production pathways and their related enzymes are significantly increased (p < 0.05). In addition, there is a significant decrease (p < 0.05) in the abundance of core bacteria (Prevotella, Lactobacillus, Turicibacter, Blautia, and Barnesiella) that rely on these specific AAs for growth and/or are sensitive to BA. These changes, in turn, promote further colonization of BA-producing bacteria, exacerbating the over-accumulation of BA in the ileal lumen. These results were validated by ileal microbiota in vitro culture experiments. In summary, in the late CUMS stages, IMBD is related to an excessive accumulation of BA caused by dysbiosis of the ileal microbiota and its overactive AA degradation.
Objectives: Long-term Western diet-induced non-alcoholic steatohepatitis (NASH) can lead to liver cirrhosis and NASH-associated hepatocellular carcinoma, which are end-stage liver diseases. Meanwhile, NASH is associated with mental burden and worsens as the disease progresses. Atractylodes Macrocephala Koidz (AMK) is one of the main ingredients of Shenling Baizhu San, and the effect of Polysaccharide from AMK ameliorates (PAMK), as an important medicinal ingredient of AMK, on NASH and associated anxiety/depression-like behaviors is still unclear. Methods: This study investigated the protective effect of PAMK on NASH and associated anxiety/depression-like behaviors through a Western diet-induced NASH mice model. Results: showed that PAMK decreased the concentrations of liver TC, TG, and serum AST and ALT, improving glucose tolerance, and reducing liver steatosis and fibrosis. Moreover, the expression of liver IL-6, IL-1β, TNF-α, IL-18 and MCP-1 could be reduced by PAMK significantly. Additionally, PAMK decreased anxiety/depression-like behaviors and expression of IL-6, IL-1β, TNF-α, and MCP-1 in the hippocampus. 16S rRNA gene sequencing revealed that PAMK diminished the Firmicutes/Bacteroidetes ratio and abundance of Faecalibaculum_rodentium, and increased the abundance of Muribaculaceae. This might be related to gene abundance of Pentose, the glucuronate interconversions pathway and carbohydrate enzymes (GH1, GH4). Serum metabolomics suggested that PC (18:5e/2:0), PC (16:2e/2:0), Lysopc 20:4, PC (16:0/2:0), and LPC 19:0 upregulated significantly after PAMK intervention, together with the enrichment of carbon metabolism and Citrate cycle pathways specially. Conclusions: PAMK as a potential prebiotic ameliorated NASH and associated anxiety/depression-like behaviors in mice, probably by regulating Faecalibaculum_rodentium, carbohydrate enzymes and lipid metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.