Thin films are the backbone of the electronics industry, and their widespread application in heat sensors, solar cells, and thin-film transistors has attracted the attention of researchers. The current study involves the deposition of a hetero-structured (ZnO/Zn/ZnO) thin film on a well-cleaned glass substrate using the DC magnetron sputtering technique. The samples were then annealed at 100, 200, 300, 400, and 500 °C. The structural, morphological, and electrical characteristics of the annealed samples as well as one as-deposited sample were then examined using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and a Hall effect measuring apparatus. XRD analysis showed a hexagonal ZnO crystal structure for the samples annealed at 300 and 400 °C, whereas the samples annealed at 100 and 200 °C showed metallic zinc and hexagonal ZnO, and the crystallinity decreased for the sample annealed at 500 °C with pure hexagonal crystal symmetry. According to the AFM study, as the annealing temperature increases, the average roughness (Ra) decreases. Temperature has an inverse relationship with particle size. The optimal annealing temperature was determined to be 400 °C. Over this temperature range, the average roughness and particle size increased. Similarly, when Ra decreased, the conductivity increased and the resistance decreased. A fundamental difficulty is that the heating of the heterostructure to 400 °C melts the Zn-based intermediate layer, which alters the Zn phase and disrupts the sample homogeneity.