Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Piezoelectric c-axis oriented zinc oxide (ZnO) thin films, from 1.8 up to 6.6 µm thick, have been grown by the radio frequency magnetron sputtering technique onto fused silica substrates. A delay line consisting of two interdigital transducers (IDTs) with wavelength λ = 80 µm was photolithographically implemented onto the surface of the ZnO layers. Due to the IDTs’ split-finger configuration and metallization ratio (0.5), the propagation of the fundamental, third, and ninth harmonic Rayleigh waves is excited; also, three leaky surface acoustic waves (SAWs) were detected travelling at a velocity close to that of the longitudinal bulk wave in SiO2. The acoustic waves’ propagation in ZnO/fused silica was simulated by using the 2D finite-element method (FEM) technique to identify the nature of the experimentally detected waves. It turned out that, in addition to the fundamental and harmonic Rayleigh waves, high-frequency leaky surface waves are also excited by the harmonic wavelengths; such modes are identified as Sezawa waves under the cut-off, hereafter named leaky Sezawa (LS). The velocities of all the modes was found to be in good agreement with the theoretically calculated values. The existence of a low-loss region in the attenuation vs. layer thickness curve for the Sezawa wave below the cut-off was theoretically predicted and experimentally assessed.
Piezoelectric c-axis oriented zinc oxide (ZnO) thin films, from 1.8 up to 6.6 µm thick, have been grown by the radio frequency magnetron sputtering technique onto fused silica substrates. A delay line consisting of two interdigital transducers (IDTs) with wavelength λ = 80 µm was photolithographically implemented onto the surface of the ZnO layers. Due to the IDTs’ split-finger configuration and metallization ratio (0.5), the propagation of the fundamental, third, and ninth harmonic Rayleigh waves is excited; also, three leaky surface acoustic waves (SAWs) were detected travelling at a velocity close to that of the longitudinal bulk wave in SiO2. The acoustic waves’ propagation in ZnO/fused silica was simulated by using the 2D finite-element method (FEM) technique to identify the nature of the experimentally detected waves. It turned out that, in addition to the fundamental and harmonic Rayleigh waves, high-frequency leaky surface waves are also excited by the harmonic wavelengths; such modes are identified as Sezawa waves under the cut-off, hereafter named leaky Sezawa (LS). The velocities of all the modes was found to be in good agreement with the theoretically calculated values. The existence of a low-loss region in the attenuation vs. layer thickness curve for the Sezawa wave below the cut-off was theoretically predicted and experimentally assessed.
The acoustoelectric (AE) effect induced by the absorption of ultraviolet (UV) light at 365 nm in piezoelectric ZnO films was theoretically and experimentally studied. c-ZnO films 4.0 µm thick were grown by the RF reactive magnetron sputtering technique onto fused silica substrates at 200 °C. A surface acoustic wave (SAW) delay line was fabricated with two split-finger Al interdigital transducers (IDTs) photolithographically implemented onto the ZnO-free surface to excite and reveal the propagation of the fundamental Rayleigh wave and its third harmonic at about 39 and 104 MHz. A small area of a few square millimeters on the surface of the ZnO layer, in between the two IDTs, was illuminated by UV light at different light power values (from about 10 mW up to 1.2 W) through the back surface of the SiO2 substrate, which is optically transparent. The UV absorption caused a change of the ZnO electrical conductivity, which in turn affected the velocity and insertion loss (IL) of the two waves. It was experimentally observed that the phase velocity of the fundamental and third harmonic waves decreased with an increase in the UV power, while the IL vs. UV power behavior differed at large UV power values: the Rayleigh wave underwent a single peak in attenuation, while its third harmonic underwent a further peak. A two-dimensional finite element study was performed to simulate the waves IL and phase velocity vs. the ZnO electrical conductivity, under the assumption that the ZnO layer conductivity undergoes an in-depth inhomogeneous change according to an exponential decay law, with a penetration depth of 325 nm. The theoretical results predicted single- and double-peak IL behavior for the fundamental and harmonic wave due to volume conductivity changes, as opposed to the AE effect induced by surface conductivity changes for which a single-peak IL behavior is expected. The phenomena predicted by the theoretical models were confirmed by the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.