Over 3 in 4 adults with diabetes live in low- and middle-income counties and health expenditure also increased 316% over the last 15 years. In this regard, we fabricate low cost, reusable and rapid detection of diabetes sensor based on zinc oxide rod inserted ruthenium-doped carbon nitride (ZnO–g–Ru–C3N4) modified sensor device. Developed sensor device physically and electrochemically characterized using X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), chronoamperometry (CA) and differential pulse voltammetry (DPV). Sensing device as an effective enzyme-free glucose detection with high sensitivity (346 μA/mM/cm2) over the applied lower potential of +0.26 V (vs. Ag/AgCl), fast response (3 s) and broad linear range of (2–28) mM, coupled with a lower limit of detection (3.5 nM). The biosensing device gives better anti-interference ability with justifiable reproducibility, reusability (single electrode re-use 26 times in physiological buffer and 3 times in serum) and stability. Moreover, the real-time applicability of the sensor device was evaluated in human blood, serum and urine samples.