Recently, zinc (Zn) and its alloys have demonstrated great potential as guided bone regeneration (GBR) membranes to treat the problems of insufficient alveolar bone volume and long-term osseointegration instability during dental implantology. However, bone regeneration is a complex process consisting of osteogenesis, angiogenesis, and antibacterial function. For now, the in vivo osteogenic performance and antibacterial activity of pure Zn are inadequate, and thus fabricating a platform to endow Zn membranes with multifunctions may be essential to address these issues. In this study, various bimetallic magnesium/copper metal−organic framework (Mg/Cu-MOF) coatings were fabricated and immobilized on pure Zn. The results indicated that the degradation rate and water stability of Mg/Cu-MOF coatings could be regulated by controlling the feeding ratio of Cu 2+ . As the coating and Zn substrate degraded, an alkaline microenvironment enriched with Zn 2+ , Mg 2+ , and Cu 2+ was generated. It significantly improved calcium phosphate deposition, differentiation of osteoblasts, and vascularization of endothelial cells in the extracts. Among them, Mg/Cu1 showed the best comprehensive performance. The superior antibacterial activity of Mg/Cu1 was demonstrated in vitro and in vivo, which indicated significantly enhanced bacteriostatic activity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli as compared to that of the bare sample. Bimetallic Mg/Cu-MOF coating could properly coordinate the multifunction on a Zn membrane and could be a promising platform for promoting its bone regeneration, which could pave the way for Zn-based materials to be used as barrier membranes in oral clinical trials.