The continuous release of bone-stored growth factors following bone resorption promotes the colonization of circulating cancer cells. However, the precise role of each of the various growth factors remains unclear. In this study, we investigated the role of bone-derived insulin-like growth factor (IGF) in the development of bone metastases in an animal model of breast cancer. We found that local stimulation of calvarial bone resorption prior to cell inoculation stimulated subsequent bone metastases to that site in vivo, while inhibition of bone resorption inhibited bone metastases. Anchorage-independent growth of cancer cells was stimulated by the culture supernatants from resorbed bones, which contained elevated levels of IGF type I (IGF-1). This stimulation was blocked by IGF-1 receptor (IGF1R) neutralizing antibody, but not antibody targeting other bone-stored growth factors including TGFβ, fibroblast growth factors, and platelet derived growth factors. While recombinant human IGF-I caused IGFIR tyrosine autophosphorylation, followed by activation of Akt and NF-κB in cancer cells, dominant-negative inhibition of IGFIR, Akt, or NF-κB significantly reduced bone metastases with increased apoptosis and decreased mitosis in metastatic cells. Together, our findings suggest that bone-derived IGF-I bridges the crosstalk between bone and metastasized cancer cells via activation of the IGFIR/Akt/NF-κB pathway. Disruption of this pathway therefore may represent a promising therapeutic intervention for bone metastasis.