Zolpidem is a short-acting imidazopyridine hypnotic that binds at the benzodiazepine binding site on specific GABAA receptors to enhance fast inhibitory neurotransmission. The behavioral and receptor pharmacology of zolpidem has been studied extensively, but little is known about its neuronal substrates in vivo. In the present within-subject, double-blind, and placebo-controlled study, blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) at 3 Tesla was used to assess the effects of zolpidem within the brain. Healthy participants (n=12) were scanned 60 minutes after acute oral administration of zolpidem (0, 5, 10, or 20 mg), and changes in BOLD signal were measured in the visual cortex during presentation of a flashing checkerboard. Heart rate and oxygen saturation were monitored continuously throughout the session. Zolpidem (10 and 20 mg) reduced the robust visual system activation produced by presentation of this stimulus, but had no effects on physiological activity during the fMRI scan. Zolpidem’s modulation of the BOLD signal within the visual cortex is consistent with the abundant distribution of GABAA receptors localized in this region, as well as previous studies showing a relationship between increased GABA-mediated neuronal inhibition and a reduction in BOLD activation.