2010
DOI: 10.1177/193229681000400428
|View full text |Cite
|
Sign up to set email alerts
|

Zone Model Predictive Control: A Strategy to Minimize Hyper- and Hypoglycemic Events

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
163
0
3

Year Published

2011
2011
2020
2020

Publication Types

Select...
7
1
1

Relationship

2
7

Authors

Journals

citations
Cited by 188 publications
(166 citation statements)
references
References 17 publications
0
163
0
3
Order By: Relevance
“…Several formulations of the MPC problem have been proposed for the AP system, depending on the controller objectives, the type of the mathematical model used and the control specifications. For example, the desired blood glucose can be of a constant or time-varying value [59,60] or a euglycemic zone may be formulated that can also be constant [61] or time varying [62]. The mathematical model can be physiological or empirical, time invariant or adaptive.…”
Section: Control Algorithms For the Artificial Pancreasmentioning
confidence: 99%
“…Several formulations of the MPC problem have been proposed for the AP system, depending on the controller objectives, the type of the mathematical model used and the control specifications. For example, the desired blood glucose can be of a constant or time-varying value [59,60] or a euglycemic zone may be formulated that can also be constant [61] or time varying [62]. The mathematical model can be physiological or empirical, time invariant or adaptive.…”
Section: Control Algorithms For the Artificial Pancreasmentioning
confidence: 99%
“…Grosman et al [33] applied a zone MPC [34] to blood glucose control of T1D patients (Figure 2d) that considers a performance index with penalty only if the output surpasses a specified range, and confirmed by simulation that blood glucose levels can be maintained more appropriately than by the existing open-loop blood glucose control methods, including the postprandial period. Wang et al [35] constructed a blood glucose control system (Figure 2e) combining MPC and iterative learning of blood glucose responses after a meal, and verified by simulation of T1D patients that the system can achieve better control performance against variability of amount and time of meal than that with only an MPC controller.…”
Section: Citationmentioning
confidence: 92%
“…Модель интеллектуального управления была предложена в качестве подходящей стратегии для конструкций ИПЖ с использованием подкожного введения инсулина и воспринимающей большие за-держки в этих системах [10]. При использовании ИП-вве-дения инсулина системная задержка ответа на события (введение инсулина) значительно меньше.…”
Section: обоснованиеunclassified