The high-cycle fatigue behaviour of a timber-to-timber connection with self-tapping screws is examined with the fasteners under bending due to their alignment lateral to the load direction. The cyclic tests were carried out with a sinusoidal non-reversed load ($$R=0.1$$
R
=
0.1
) with a loading frequency of 5 Hz. The examined connection is designed for the quasistatic failure mechanism with two plastic hinges per shear plane according to Johansen’s theory (European Yield Model), which is mirrored in the observed fatigue failure. Based on 30 cyclic tests on four nominal stress levels $$\left( S=\left\{ 0.47,\;0.41,\;0.31,\;0.20 \right\} \right) $$
S
=
0.47
,
0.41
,
0.31
,
0.20
in the finite-life regime the respective Wöhler-curve is obtained, showing high conformity with the test data due to a consideration of the specific density of the individual specimens. It is shown that the examined fasteners show a superior fatigue behaviour under bending compared to axial loading. A simple safe-side approach for the application of Wöhler-curves for axial loading of threaded fasteners to the present case of fastener bending is proposed, extending the field of possible applications for the results of existing and future studies of the behaviour under axial loading.