Pigs provide valuable meat sources, disease models, and research materials for humans. However, traditional methods no longer meet the developing needs of pig production. More recently, advanced biotechnologies such as SCNT and genome editing are enabling researchers to manipulate genomic DNA molecules. Such methods have greatly promoted the advancement of pig research. Three gene editing platforms including ZFNs, TALENs, and CRISPR/Cas are becoming increasingly prevalent in life science research, with CRISPR/Cas9 now being the most widely used. CRISPR/Cas9, a part of the defense mechanism against viral infection, was discovered in prokaryotes and has now developed as a powerful and effective genome editing tool that can introduce and enhance modifications to the eukaryotic genomes in a range of animals including insects, amphibians, fish, and mammals in a predictable manner. Given its excellent characteristics that are superior to other tailored endonucleases systems, CRISPR/Cas9 is suitable for conducting pig-related studies. In this review, we briefly discuss the historical perspectives of CRISPR/Cas9 technology and highlight the applications and developments for using CRISPR/Cas9-based methods in pig research. We will also review the choices for delivering genome editing elements and the merits and drawbacks of utilizing the CRISPR/Cas9 technology for pig research, as well as the future prospects.